
PHD RESEARCH PLAN

Md. Haider Ali Biswas

PDEEC Student ID. 080535022

Academic Year 2009–2010

Faculty of Engineering, University of Porto, Portugal

Doctoral Program in Electrical and Computer Engineering



This report is on the research plan of my PhD thesis prepared to be presented to the Supervising

Committee of the PDEEC so as to comply with the PDEEC norms of academic excellence.

I take the opportunity to thank my supervisor, Maria do Rosario de Pinho, and the Doctoral Program

in Electrical and Computer Engineering (PDEEC), of the Department of Electrical and Computer

Engineering at Faculty of Engineering, University of Porto, Portugal for the partial grant I received

when starting this PhD work. The financial support from the Foundation for Science and Technology

(FCT), Portugal with the grant Ref. SFRH/BD/63707/2009 is also greatly acknowledged.



Contents

1 Introduction 6

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Organizational Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Optimal Control Problems–Literature Review 9

2.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Constrained Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Endpoint Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Control Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Pathwise Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Types of Local Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Strong Local Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Weak Local Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 W 1,1 Local Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Local Minimum of Radius R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Nonsmooth Analysis and Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Fundamentals of Nonsmooth Analysis . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 The Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Smooth Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3



2.6.2 Nonsmooth Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Degeneracy in Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Nonsmooth Maximum Principles for State Constrained Problems 27

3.1 Optimal Control Problems with State Constraints . . . . . . . . . . . . . . . . . . . . 27

3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Non Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Sketch of the Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.2 Non Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Maximum Principles for Mixed Constrained Problems–Convex Case 41

4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 The Convex Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Sketch of the Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Application of Optimal Control to Real Life Problems 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 The Existing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 The Optimal Chemotherapeutic Strategy . . . . . . . . . . . . . . . . . . . . . 48

5.3 Our Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 New Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion and Future Directions 52

4



6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5



Chapter 1

Introduction

This report deals with the up to date development of my ongoing PhD research on ”Necessary

Conditions for Optimal Control Problems with State Constraints: Theory and Ap-

plications”. We present here a scenario for my PhD Thesis and the state-of-art of our work. In

this report we review the very basic notions of optimal control problems with and without state

constraints focussing on necessary conditions of optimality for state constrained problems.

1.1 Motivation

Necessary Conditions of Optimality (NCO) are elegant method to characterize and find solutions to

optimal control problems. The main purpose of necessary conditions of optimality is to identify a

small set of candidates to local minimizers among the overall set of admissible solutions. It is thus

natural the interest to construct NCO as strong as possible that further reduce the set of identified

candidates to a small set while still identifying all the local minimizers. The first complete and

significant version of NCO for the optimal control problems was proposed and proved by Russian

mathematician L. Pontryagin and his collaborators in 1950s in the form of Maximum Principles

(MPs)[53]. This first version of MPs was derived under smoothness assumptions for the OCPs.

Later on, a large number of modified, extended and generalized versions of MPs have been developed

by several authors and in the late 1970s, extensions in the form of Nonsmooth Maximum Principles

(NMPs) were proposed by F. Clarke [12].

Necessary Conditions of Optimality for Optimal Control Problems with State Constraints have at-

tracted attention since probably the early stage of the control research, specially because of the

inter-related applications in diverse engineering fields, for examples, aerospace and robotics, pro-
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cess engineering and economics, biology and medicine. Almost in all engineering applications, state

constraints are imposed to have the desired output from the optimal control problems in questions.

Different versions of MPs and even strengthened versions of MPs for state constrained optimal control

problems both for smooth and nonsmooth cases have been developed over the years.

Our purpose in this thesis is firstly to study the up to date developments in this topic for deriving

new set of necessary conditions of optimality for optimal control problems with state constraints

and secondly implement our newly developed theories to some real life problems. Throughout this

thesis, we mainly focus on the fixed time problems. We summarize here our main contributions of

this thesis:

• New nonsmooth necessary conditions of optimality for state constrained problems are obtained

under some convexity assumptions.

• Previous result is validated and improved when the convexity is removed.

• A new nonsmooth maximum principle is then obtained for problems with additional mixed

constraints. Convex case is already studied. Removal of convexity is under study.

In our development, we generalize the work of Clarke and de Pinho [18] to state constraints ( see a

discussion on our results in section 3.6 of Chapter 3).

1.2 Organizational Overview

This report is organized in the following manner. In Chapter 2, we introduce a general review on

the literatures of optimal control problems.

Chapter 3 presents new results on nonsmooth maximum principle for optimal control problems

with state constraints.

In Chapter 4, we also provide a nonsmooth maximum principles considering both the pure state and

mixed constraints [6] under convexity assumption. We hope to extend our results to the nonconvex

case later on.

In Chapter 5, we discuss another crucial part of this PhD thesis, the Application of optimal control

to real life problems, specially in epidemiology and medicine. We introduce an existing infectious

disease model, namely the HIV model. Our challenge is to reformulate the problem replacing ”soft

state constraints” by ”hard state constraints”. To such new model we will study the problem both in

analytical and numerical methods comparing the results with existing literatures. This is an example
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of a problem we aim to study both analytically and numerically. At this stage we cannot be sure

that such problem will be the chosen one at the end of this thesis.

Finally in Chapter 6, we conclude this report by providing a summary of the present contributions

of our work and the future plan of our research which will be carried out within the rest of the time

frame. We also pose some related open questions concerning the state constrained optimal control

problems and their applications to the real world problems in the field of epidemiology and medicine

to motivate further research.

8



Chapter 2

Optimal Control Problems–Literature

Review

It is commonly accepted that optimal control theory was born with the publication of a seminal

paper by Pontryagin and collaborates last century, at the end of 50s. Since then optimal control

theory has played a relevant role not only in the dynamic optimization but also in the control and

system engineering. Another crucial moment in this theory is closely related with the development

of nonsmooth analysis during the 70s and 80s. Nonsmooth analysis has triggered a new interest

in optimal control problems and thus ”brought new solutions to old problems” [56]. Nowadays

optimal control theory is essential to different areas like engineering, economics and biology since

many problems are modeled as optimal control problems.

Nowadays Optimal Control is an independent field of research. The development of optimal control

has gained strength by treating multi-variable, time varying systems, as well as many nonlinear

problems arising in control engineering. Several authors contributed to the basic foundation of a

very large scale research effort initiated in the end of the 1950s, which continues to the present day.

The development of Nonsmooth Analysis (see for example, [12] and [56]) has enhanced a wide scope

of research as well as it has opened a new horizon in the optimal control theory. A challenging

area of study in this theory remains that of state constraints. Necessary conditions of optimality

for optimal control problems with state constraints have been studied since the very beginning of

optimal control theory [53]. In spite of all the recent developments, this subject is far from explored.

Throughout this report (as with our thesis) we focus on ’fixed time’ optimal control problem with

state constraints.
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2.1 Preliminaries and Notations

Before proceeding we need to introduce some definitions and notations that will be used throughout

the text.

For g in Rm, inequalities like g ≤ 0 are interpreted componentwise. Here and throughout this report,

B represents the closed unit ball centered at the origin regardless of the dimension of the underlying

space and | · | the Euclidean norm or the induced matrix norm on Rp×q. The Euclidean distance

function with respect to a given set A ⊂ Rn is

dA : Rn → R, y 7→ dA(y) = inf {|y − x| : x ∈ A} .

A function h : [a, b] → Rp lies in W 1,1([a, b];Rp) if and only if it is absolutely continuous; in

L1([a, b];Rp) iff it is integrable; and in L∞([a, b];Rp) iff it is essentially bounded. The norm of

L∞([a, b];Rp) is ‖·‖∞.

The effect of state constraints in the optimal control problems is the introduction of measures as

multipliers. These multipliers associated with state constraints are the elements of the topological

dual space. The space C∗([a, b];R) is the topological dual of the space of continuous functions

C([a, b];R). Elements of C∗([a, b];R) can be identified with finite regular measures on the Borel

subsets of [a,b]. The set of elements in C∗([a, b];R) taking nonnegative values on nonnegative-valued

functions in C([a, b];R) is denoted by C⊕([a, b];R). The norm in C⊕([a, b];R), |µ|, coincides with the

total variation of µ,
∫
[a,b]

µ(ds). The support of a measure µ, written as supp{µ}, is the smallest

closed set A ⊂ [a, b] such that for any relatively open subset B ⊂ [a, b]\A we have µ(B) = 0. More

discussions on measures can be obtained in [56].

2.2 Optimal Control Problems

Since the birth of the optimal control, several authors proposed different basic mathematical formu-

lations of OCPs (fixed time problems). For fixed time problems there are three major mathematical

formulations of optimal control problems: Bolza form, Lagrange form and Mayer form.

We start with the general form of Bolza problem:
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Minimize J(x, u) = l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t))dt

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E.

Here [a, b] is a fixed interval. The function f : [a, b]×Rn ×Rm → Rn describes the system dynamics

and U : [a, b]→ Rm is a multifunction. Furthermore, the closed set E ⊂ Rn × Rn and the functions

l : Rn × Rn → R and L : [a, b] × Rn × Rm → R specify the endpoint constraints and cost. The

functional

l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t))dt (2.1)

to be minimized is called the payoff or cost functional. The aim of this problem is to find the pair

(x, u) comprising two functions where u : [a, b] → Rm (the control function) and the corresponding

state trajectory x which is an absolutely continuous function x : [a, b]→ Rn (called the state function)

satisfying all the constraints of the problem (PB) and minimizing the cost. A pair (x, u) where x

is an absolutely continuous function and u is a function belonging to a certain space U (U can be

L1, C, the space of measurable functions, the space of piecewise continuous functions, etc.) such that

ẋ(t) = f(t, x(t), u(t)) a.e. is called a process. A ’process ’ satisfying all the constraints of the problem

(PB) is called an admissible process. We say that (x∗, u∗) is an optimal solution if it minimizes the

cost over all admissible processes. For optimal control problems one may speak of local or global

minimizers. In this thesis we focus on local minimizers. Local minimizers can be of different types

as we will see in section 2.4.

If the function l : Rn × Rn → R is absent from the cost functional (2.1) and all others data remain

the same, we obtain the optimal control problem in Lagrange form; the cost is simply

J(x, u) =

∫ b

a

L(t, x(t), u(t))dt (2.2)

On the other hand, if the Lebesgue integrable function L : [a, b]× Rn × Rm → R is absent from the

cost functional (2.1) and all others constraints remain the same, we obtain the Mayer form with cost

J(x, u) = l(x(a), x(b)) (2.3)
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However, we can reformulate Bolza form (2.1) into Mayer form by state augmentation. Let us define,

ẏ(t) = L(t, x(t), u(t)) a.e.

y(a) = 0.
(2.4)

Then the problem (PB) can be rewritten as following

(PM)



Minimize J(x, u) = l(x(a), x(b)) + y(b)

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

ẏ(t) = L(t, x(t), u(t)) a.e. t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

((x(a), x(b)), y(a)) ∈ E × {0}.

This new problem (PM) is now in Mayer form. We refer readers [5, 11, 22, 43, 44] for more extensive

studies on the transformations of optimal control problems from the Bolza form to the other two

special forms along with their examples.

Different variants of optimal control problems appear in the control system dynamics over the years.

The problems we have mentioned here are fixed time problems (since the time interval [a, b] is fixed).

The other problems as free time problems, minimum time problems as well as impulsive control

problems and others are out of the scope of this thesis.

2.3 Constrained Optimal Control Problems

Optimal control problems (OCPs) have become challenging because of imposing a great variety

of physical constraints. These constraints restrict the range of values of both the control and the

state variables. When the pathwise constraints are imposed on the state trajectories of the optimal

control problems in question, such types of problems are called the state constrained optimal control

problems. In most cases, such constraints take the form of scalar functional inequality constraints

because these kinds of state constraints are frequently encountered in engineering applications. Also

such constraints are convenient to derive necessary conditions for other types of state constraints

(multiple state constraints, implicit state constraints, etc.) of interest.

Next we briefly review the different constraints usually imposed to optimal control problems in

many engineering applications. As we mentioned before, we focus only on constraints for fixed time

problems.
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2.3.1 Endpoint Constraints

The constraints which are usually imposed at the initial point and/or terminal point of a fixed interval

[a, b] are called endpoint constraints. The most general way of writing this constraint is

(x(a), x(b)) ∈ E (3.5)

This includes many types of constraints. Suppose for example,

(i)

{
x(a) = xa

x(b) ∈ Rn

then E = {xa} × Rn and (3.5)⇔ (x(a), x(b)) ∈ E.

Again endpoint constraints of the form

(ii)

{
x(a) = xa

x(b) ∈ Eb

where Eb may be a point or nonempty set are common in applications.

Moreover we can have endpoint constraints in the form of equality or inequality or both. i.e., We

can have φ1(x(a), x(b)) = 0 and/or φ2(x(a), x(b)) ≤ 0. These constraints can be written into the

inclusion form by the right choice of the set E.

2.3.2 Control Constraints

The constraints which are imposed on the control variables of an optimal control problem are treated

as control constraints. In this case the control variables are restricted to take values in a certain set.

For example, u(t) ∈ U(t) is called control constraints, where u takes values from a measurable

multifunction U : [a, b]→ Rm.

2.3.3 Pathwise Constraints

The pathwise constraints encountered in many optimal control problems may be defined for restricting

the range of values taken by mixed functions of both the control and the state variables and such

restrictions can be imposed over the entire time interval [a, b] or any (nonempty) time subinterval.

Let us discuss here some common pathwise constraints appearing in the literature. In general, such
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constraints can be written as

(x(t), u(t)) ∈ C(t) for all t ∈ [a, b]

where C : [a, b]→ Rn×Rm is a given multifunction. In the literature, however, we encounter explicit

constraints of the form:

A. Equality state constraint: Let h : [a, b]× Rn → R be a given function. Then

h(t, x(t)) = 0 for all t ∈ [a, b]

is called an equality state constraint.

B. Inequality state constraint: Let h : [a, b]× Rn → R be a given function. Then

h(t, x(t)) ≤ 0 for all t ∈ [a, b]

is called an inequality state constraint.

C. Implicit state constraint: Let X : [a, b]→ Rn be a given multifunction. Then

x(t) ∈ X(t) for all t ∈ [a, b]

is called an implicit state constraint.

D. Mixed inequality state-control constraint: Let g : [a, b]×Rn×Rm → Rk be a given function.

Then

g(t, x(t), u(t)) ≤ 0 a.e. t ∈ [a, b]

is called a mixed inequality state-control constraint.

E. Mixed equality state-control constraint: Let b : [a, b]×Rn×Rm → Rk be a given function.

Then

b(t, x(t), u(t)) = 0 a.e. t ∈ [a, b]

is called a mixed equality state-control constraint.

Usually one refers to constraints of types A, B and C as pure state constraints to highlight the

difference with those in the form D and E which are mixed constraints. Observe that state constraints

are imposed for all t in an interval [a, b] or any subinterval of [a, b] while mixed constraints can be

imposed simply for almost every t.

Focussing on the first three types of constraints A, B and C, it is obvious that type C is the more
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general (see in this respect the discussion in [56], Chapter 9). Constraints of type A and B can be

written as

x(t) ∈ X(t) for all t ∈ [a, b],

where X(t) := {x ∈ Rn : h(t, x(t)) = 0} or X(t) := {x ∈ Rn : h(t, x(t)) ≤ 0}.

Observe that in fact C can be viewed as a special case of

(x(t), u(t)) ∈ C(t)

when C(t) = X(t)×Rm, if no set constraints are imposed on the control or C(t) = X(t)×U(t) when

we impose u(t) ∈ U(t). On the other hand, D and E can also be written as

(x(t), u(t)) ∈ C(t)

where

C(t) = {(x, u) ∈ Rn × Rm : g(t, x(t), u(t)) ≤ 0} or C(t) = {(x, u) ∈ Rn × Rm : b(t, x(t), u(t)) = 0}.

or more generally

C(t) = {(x, u) ∈ Rn × Rm : g(t, x(t), u(t)) ≤ 0, b(t, x(t), u(t)) = 0}.

Moreover, control set constraints of the form u(t) ∈ U(t) can also be incorporated in the multifunction

C(t) by defining C(t) to be

C(t) = {(x, u) ∈ Rn × Rm : g(t, x(t), u(t)) ≤ 0, b(t, x(t), u(t)) = 0, u ∈ U(t)}.

See [18] for even more general constraints.

It is customary in the literature to use the inclusion

(x(t), u(t)) ∈ C(t)

when we are in the presence of mixed state-control constraints using x(t) ∈ X(t) for pure state

constraints.

From the point of view of optimality conditions state constraints and mixed constraints have different

treatments. Necessary conditions for problems with constraints of type D can be obtained when some

constraint qualifications (also called in this case regularity conditions) are imposed. Such constraint
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qualifications involve the control variable. Clearly such constraint qualifications do not make any

sense when state constraints are presented since the state constraints exhibit no dependence on the

control variable. In some situations pure state constraints of type B and mixed constraints D can be

related. That may occur when the function h can be differentiated with respect to t so as to obtain

higher order derivatives containing the control variable. See [32] for more discussion on this issue

and the relevant recursive procedure of their inter-relations. Before finishing this section we give an

example of state constraints appearing in application. Consider the modeling of the temperature of

a reactor. Taking the state to be the temperature, x(t) it is natural impose an upper limit M to this

variable. This gives rise to the state constraint

x(t) ≤M ∀t ∈ [a, b] and M ∈ R.

Thus state constraints are natural features in many practical applications of optimal control problems.

2.4 Types of Local Minimizer

Minimizers are the solutions of Optimal Control Problems (OCPs)) of interests and thus play the

most vital roles in finding the optimal trajectories with respect to control variables of the problems. In

the theory of optimal control minimizers are classified into two categories: global and local. Suppose

for example, we want to find the minimizers of the problem

Minimize f(x)

subject to x ∈ Rn
(4.6)

Then x∗G will be a global minimizer of (4.6), if it minimizes the cost over all other x ∈ Rn, i.e.

f(x∗G) ≤ f(x) ∀x ∈ Rn,

and x∗L will be a local minimizer of (4.6), if it minimizes the cost over all other x in some neighborhood,

i.e. there exists ε > 0 such that

f(x∗L) ≤ f(x) ∀x ∈ B(x∗L; ε).

It was shown in [31] that in some cases the local minimizers are global minimizers. Furthermore,

all global minimizers are local minimizers. We refer readers to [56, 57] for study on minimizers.

Throughout this thesis, we will restrict our discussion to minimizers in the context of optimal control

problems to those of local minimizers.
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2.4.1 Strong Local Minimum

The process (x∗, u∗) is a strong local minimum for an optimal control problem if, for some ε > 0, it

minimizes the cost over all other admissible processes (x, u) such that

‖ x− x∗ ‖∞:= max
t∈[a,b]

|x(t)− x∗(t)| ≤ ε for all t ∈ [a, b].

Remark: We have ‖ x ‖∞:= esssup
t∈[a,b]

|x(t)|, so

‖ x ‖∞ ≤ ε⇒ |x(t)| ≤ ε a.e. t ∈ [a, b].

But if x is continuous, then

esssup
t∈[a,b]

|x(t)| = max |x(t)|.

So

|x(t)− x∗(t)| ≤ ε for all t ∈ [a, b]⇔ max|x(t)− x∗(t)| ≤ ε.

2.4.2 Weak Local Minimum

An admissible process (x∗, u∗) for an optimal control problem is called a weak minimizer if there

exists ε > 0 such that l(x∗(a), x∗(b)) ≤ l(x(a), x(b)) holds for all process (x, u) satisfying the following

conditions:

|x(t)− x∗(t)| ≤ ε ∀t ∈ [a, b]

and

|u(t)− u∗(t)| ≤ ε for almost every t ∈ [a, b].

2.4.3 W 1,1 Local Minimum

The process (x∗, u∗) is a W 1,1 local minimum for an optimal control problem if, for some ε > 0, it

minimizes the cost over all other admissible processes (x, u) such that

‖ x− x∗ ‖∞ ≤ ε, and

b∫
a

|ẋ(t)− ẋ∗(t)|dt ≤ ε.
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That is,

‖ x− x∗ ‖W 1,1= |x(a)− x∗(a)|+ ‖ ẋ(t)− ẋ∗(t) ‖L1

= |x(a)− x∗(a)|+
b∫

a

|ẋ(t)− ẋ∗(t)|dt ≤ ε.

2.4.4 Local Minimum of Radius R

Let us define a measurable function R : [a, b] → (0,+∞] which is called a radius function. The

process (x∗, u∗) is a local minimum of radius R for an optimal control problem if, for some ε > 0, it

minimizes the cost over all other admissible processes (x, u) satisfying

‖ x− x∗ ‖∞ ≤ ε ,

b∫
a

|ẋ(t)− ẋ∗(t)|dt ≤ ε,

as well as

|u(t)− u∗(t)| ≤ R(t), a.e. t ∈ [a, b].

Remarks: A relation between strong and weak local minimizers is that strong local minimizer is

always a weak local minimizer but the converse is not necessarily true [57]. It is worth mentioning

the fact that throughout this thesis, we will mainly work with strong minimizers to derive the

optimality conditions and when possible will extend them to W 1,1 local minimizers. The reasons

behind choosing this W 1,1 minimizers is that the class of W 1,1 local minimizers is larger than the

class of L∞ minimizers. It follows that, by choosing to work with W 1,1 local minimizers, we are

carrying out a sharper analysis of the local nature of the Maximum Principle than would be the case

if we chose to derive conditions satisfied by strong local minimizers.

2.5 Nonsmooth Analysis and Optimal Control

Nonsmooth Analysis deals with the local approximation of non-differentiable functions and of sets

with non-differentiable boundaries; consequently it can be treated as the branch of well known

Nonlinear Analysis [13]. In the last few decades this field has grown up very exceedingly because of

the recognition of nondifferentiable phenomena. The field of nonsmooth optimization is significant,

not only because of the existence of non-differentiable functions arising directly in applications, but

also because several important methods for solving difficult smooth problems lead directly to the

need to solve nonsmooth problems, which are either smaller in dimension or simpler in structure.
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This has provided a source of much research over the years, the fruits of which have been the birth

of nonsmooth analysis. See for examples ([12], [13] and [56]) for more details about the background

and importance of nonsmooth analysis in optimal control theory.

There has been a sustained and fruitful interaction between Nonsmooth Analysis and Optimal Con-

trol. Now-a-days nonsmooth analysis is an important tool in the development of optimal control

theory.

2.5.1 Fundamentals of Nonsmooth Analysis

In the classical sense, derivatives of a function f are related to normal vectors to tangent hyperplanes;

for any differentiable function f the vector (f ′(x),−1) is a downward normal to the graph of f at

(x, f(x)). The graph of f is defined by Grf = {(x, α) ∈ Rn × R : α = f(x)}. This geometric

relationship is the key for the development of nonsmooth analysis. Instead of considering derivatives

as elements of normal subspaces to smooth sets, generalized derivatives are defined to be elements

of normal cones to possibly nonsmooth sets. Let us start with some definitions that will be useful to

introduce nonsmooth calculus.

Let A ⊂ Rn be a nonempty closed set with x ∈ Rn\A. We call y the closest point in A or ProjA(x)

(i.e. the projection of x onto A) (see Figure 2.1) if y ∈ ProjA(x) such that

‖ x− y′ ‖≥‖ x− y ‖, ∀y′ ∈ A

which is equivalent to write

〈ω, y′ − y〉 ≤ σ ‖ y′ − y ‖2, ∀y′ ∈ A and some σ > 0,

where the vector ω = x− y is perpendicular to A at y.

Any nonnegative multiple ζ = tω, t > 0 of ω is called a proximal normal vector (see [56]. That is,

a vector ζ is called a proximal normal to A at y iff for some σ > 0 the following proximal normal

inequality holds:

〈ζ, y′ − y〉 ≤ σ ‖ y′ − y ‖2, ∀y′ ∈ A.

The set of all such vectors, which is a convex cone [18] containing 0 is denoted by NP
A (y) and is

referred to as the Proximal Normal Cone.

A vector ζ is called the limiting normal to A at x if for each i ∈ N,

ζ = lim ζi, ∀ζi ∈ NP
A (xi), xi ∈ A, xi → x,
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Figure 2.1: Geometrical interpretation of proximal normal and limiting normal cones.

and the set of all such limiting normals, denoted by NL
A(x) is a cone, called the Limiting Normal

Cone to A at x.

Given a lower semicontinuous function f : Rn → R ∪ {+∞} and a point x ∈ Rn where f(x) < +∞
such that domf = {x : f(x) < +∞}, then the proximal subdifferential (or set of all proximal

subgradients) of f at x ∈ domf is defined as the set

∂Pf(x) := {ζ ∈ Rn : (ζ,−1) ∈ NP
epif (x, f(x))}.

where epif = {(x, α) ∈ Rn × R : α ≥ f(x)} denotes the epigraph of a function f . The limiting

subdifferential (or set of all limiting subgradients) of a function f at x ∈ domf denoted by ∂Lf(x) is

obtained by the set

∂Lf(x) := {ζ ∈ Rn : (ζ,−1) ∈ NL
epif (x, f(x))}.

However, the nonsmooth calculus can be developed via the theory of generalized gradients in the

context of locally Lipschitz function. If a function f : Rn → R is locally Lipschitz near x, then

the generalized gradients ∂Cf(x) coincides with co ∂Lf(x) (convex hull of ∂Lf(x)); also in similar

fashion, the associated normal cone NC
A (x) to a set A at a point x coincides with co NL

A(x). This

generalized gradients and its calculus were first defined by Clarke in 1973 [12], so ∂Cf(x) and NC
A (x)

are also called the Clarke subdifferential and the Clarke normal cone respectively. For more details

on such nonsmooth analysis concepts and generalized gradients as well as its basic calculus, we refer

readers for example to [12, 13, 47, 56].
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2.6 The Maximum Principles

The Maximum Principle (MP) is one of the most elegant techniques used to solve the OCPs. It

provides a set of necessary conditions which should be satisfied by any optimal solution of optimal

control problem. Not surprisingly the idea behind derivation of necessary conditions in the form of

Maximum Principles is to obtain MPs that produces the smallest set of candidates to the optimal

control problems. It is well known that for some problems the classical Maximum Principle is not

only a necessary condition of optimality but also a sufficient condition (for a discussion on this feature

in a smooth and nonsmooth context see [22]).

The maximum principle is a milestone in the development of modern optimal control theory. Maxi-

mum principle plays significant role not only in solving the smooth problems, but also in problems

with nonsmooth functions. When the data of the problem are smooth, we call the corresponding

maximum principle smooth, but for the problems with nonsmooth data we call it nonsmooth maxi-

mum principle. Here we will present variants of maximum principles both for smooth and nonsmooth

optimal control problems with and without state constraints.

2.6.1 Smooth Maximum Principles

The ’first version’ as well as the widely accepted Pontryagin maximum principle was proved for

the optimal control problems with ’smooth’ dynamic constraints. This smooth version of maximum

principles have been the basic foundation of all other extended versions of MPs over the years.

To illustrate the smooth maximum principle, we consider the optimal control problem with state

constraints,

(OCP )



Minimize J(x, u) = l(x(a), x(b))

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

h(t, x(t)) ≤ 0 for all t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E.

We assume for the time being that the state constraint h(t, x(t)) ≤ 0 is absent from the problem.

The smooth maximum principle, which we present now, is valid under smooth assumptions on the

data. Here, and for simplicity, we consider that the functions f , l are all continuously differentiable.

Observe that in (OCP) (and again for the sake of simplicity) we assume the multifunction U to be

constant (i.e., U(t) = U ) and U is a closed set. We define the Pseudo-Hamiltonian (or Unmaximized
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Hamiltonian or Pontryagin) function

H(t, x, p, u) = 〈p, f(t, x, u)〉.

Now the smooth maximum principle for the problem (OCP) without state constraints under some

appropriate assumptions can be presented in the next Theorem (an adaptation of Theorem 6.2.1 in

[56]).

Theorem 2.1 (The Maximum Principle for (OCP) Without State Constraints): Let

(x∗, u∗) be a strong local minimum for problem (OCP ) without state constraints. Then there exist

an arc p ∈ W 1,1([a, b];Rn) and a scalar λ0 ≥ 0 satisfying

the Nontriviality Condition [NT]:

(p, λ0) 6= (0, 0),

the Euler Adjoint Equation [AE]:

−ṗ(t) = ∇x〈p(t), f(t, x∗(t), u∗(t))〉 a.e.,

the global Weierstrass Condition [W]:

∀ u ∈ U(t),

〈p(t), f(t, x∗(t), u)〉 ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 a.e.,

and the Transversality Condition [T]:

(p(a),−p(b)) = λ0∇l(x∗(a), x∗(b)) + (η1, η2),

for some (η1, η2) ∈ NL
E(x∗(a), x∗(b)).

The function p is called the costate (or adjoint) function and λ0 the cost multiplier. The adjoint

equation is also called the costate differential equation.

However, we now turn to the more general case of the same problem (OCP) assuming that the state

constraint is imposed. We note that the effect of state constraints is the introduction of measures as

multipliers. The adjoint multiplier p is then replaced by a function q of bounded variation defined

by,

q(t) =

 p(t) +
∫
[a,t)

γ(s)µ(ds) t ∈ [a, b)

p(t) +
∫
[a,b]

γ(s)µ(ds) t = b.
(6.7)

Let us assume again that the functions f , l and h are all continuously differentiable and as before,
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that U is a closed set. Then the smooth maximum principles for the state constrained optimal control

problems can be adapted in the following Theorem (an adaptation of Theorem 9.3.1 in [56]).

Theorem 2.2 (The Maximum Principle for (OCP) With State Constraints): Let (x∗, u∗)

be a strong local minimum for problem (OCP ) with state constraints. Then there exist an arc

p ∈ W 1,1([a, b];Rn), a scalar λ0 ≥ 0, µ ∈ C⊕([a, b]), and a measurable function γ(t) : [a, b]→ Rn such

that the following conditions are satisfied:

(i) The Nontriviality Condition [NT]:

(p, µ, λ0) 6= (0, 0, 0)

(ii) The Euler Adjoint Equation [AE]:

−ṗ(t) = ∇x〈q(t), f(t, x∗(t), u∗(t))〉 a.e.,

(iii) The Weierstrass Condition [W]:

∀ u ∈ U(t),

〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e.,

(iv) The Transversality Condition [T]:

(p(a),−q(b)) = λ0∇l(x∗(a), x∗(b)) + (η1, η2),

for some (η1, η2) ∈ NL
E(x∗(a), x∗(b)),

(v) : supp{µ} ⊂ I(x∗),

where I(x∗) := {t : h(t, x∗(t)) = 0} and q is as in (6.7).

We note that the maximum principle in Theorem 2.2 is of interest only when the state constraint is

nondegenerate. We briefly discuss this nondegeneracy issue in Section 2.7.

2.6.2 Nonsmooth Maximum Principles

The nonsmooth maximum principles have been one of the central attractions of the nonsmooth

optimization problems for a long time. In the 1970s F. Clarke generalized the convex subdifferentials

of Rockafellar to cover Lipschitz continuous functions and to some extent, lower semi-continuous

functions (see, for example [12]). He also successfully applied nonsmooth analysis to optimization and

optimal control theory. In 1976s Mordukhovich proposed the concept of limiting subdifferential and
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he showed how transversality conditions in the nonsmooth maximum principle could be weakened.

We now discuss here the nonsmooth maximum principle for optimal control problems with state

constraints. We consider again our problem (OCP) with state constraints, but we will impose the

following hypotheses which make reference to an optimal solution (x∗, u∗) and a parameter ε > 0:

(NH1): The function (t, u)→ f(t, x, u) is L×B measurable and there exist ε > 0 and an integrable

function k(t) such that, for almost every t ∈ [a, b] the following condition holds:

|f(t, x1, u)− f(t, x2, u)| ≤ k(t)‖x2 − x1‖, ∀u ∈ U(t), (x1, x2) ∈ B(x∗, ε).

(NH2): l is Lipschitz near (x∗(a), x∗(b)) with Lipschitz constant Kl.

(NH3): h is upper semicontinuous and for each t ∈ [a, b] the function h(t, ·) is Lipschitz on x∗(t) +

B(0, ε) with Lipschitz constant Kh.

(NH4:) GrU is a Borel set.

where GrU is the graph of the multifunction U : [a, b]→ Rm defined by

GrU := {(t, u) ∈ [a, b]× Rm : u ∈ U(t)}.

Theorem 2.3 (The Nonsmooth Maximum Principle for (OCP) With State Constraints):

Let (x∗, u∗) be a strong local minimum for problem (OCP ) with state constraints. and assume that

hypotheses (NH1)–(NH4) are satisfied. Then there exist an arc p ∈ W 1,1([a, b];Rn), a scalar λ0 ≥ 0,

µ ∈ C⊕([a, b]), and a measurable function γ(t) : [a, b] → Rn satisfying γ(t) ∈ ∂>x h(t, x∗(t)) µ − a.e.
such that the following conditions are satisfied.

(i) The Nontriviality Condition [NT]:

(p, µ, λ0) 6= (0, 0, 0),

(ii) The Euler Adjoint Equation [AE]:

−ṗ(t) ∈ ∂Cx 〈q(t), f(t, x∗(t), u∗(t))〉,

(iii) The Weierstrass Condition [W]:

∀ u ∈ U(t),

〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e.,
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(iv) The Transversality Condition [T]:

(p(a),−q(b)) ∈ λ0∂l(x∗(a), x∗(b)) + (η1, η2),

for some (η1, η2) ∈ NC
E (x∗(a), x∗(b)),

(v) : supp{µ} ⊂ I(x∗),

where I(x∗) := {t : h(t, x∗(t)) = 0} , q is as in (6.7), and the partial subdifferential ∂>x is defined by

∂>x h(t, x) := co {γ : ∃(ti, xi)
h−→ (t, x) : h(ti, xi) > 0 ∀i, ∇xh(ti, xi)→ γ}. (6.8)

Several extended versions, and even more strengthened form of nonsmooth maximum principles for

state constrained optimal control problems have been developed over the years. We refer readers

[12, 15, 16, 21, 55] for the detailed presentations and to [17, 18] for the recent developments in the

nonsmooth maximum principle.

2.7 Degeneracy in Optimal Control Problems

The Degeneracy phenomenon arising in optimal control problems with state constraints is one of

the most troublesome issues while deriving the necessary conditions of optimality (NCO) for optimal

control problems (OCPs). It was first pointed out in the Russian literature and has been the subject

of subsequent extensive study over the last few decades ( see, for example [56]). We say that the

Maximum principle degenerates when the necessary conditions supply no useful information about

the minimizers. This happens for example when the state trajectory is fixed and lies on the boundary

of the state constraint set. In these cases a nonzero, but nevertheless trivial, set of multipliers exists

[54]. It was shown in [2] that this phenomenon occurs because of the incompleteness of the standard

variants of Pontryagin’s maximum principle for problems with state constraints.

To illustrate this situation, let us now suppose that the pair (x∗, u∗) solve the problem (OCP ).

Consider, for example,

Ea = {xa} and h(a, xa) = 0

for some point xa ∈ Rn such that ∇xh(a, xa) 6= 0 (i.e., the case when the left endpoint is fixed at xa

and xa lies in the boundary of the state constraint set). Then the necessary conditions in equations

(i)–(v) of Theorem 2.3 are satisfied for any feasible process (x∗, u∗) (local minimizer or not) with the
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nonzero multiplier set

λ = 0, µ = δ{a}, and p = −∇xh(a, xa), (7.9)

where δ{a} denotes the unit measure (or Dirac measure) concentrated at {a}. In this situation we

say that the Maximum principle degenerates. This situation (i.e. λ = 0 ) is also treated as the

Abnormality of the maximum principles.

There are several ways to overcome the degeneracy situation and to obtain the Nondegenerate Max-

imum Principles for constrained optimal control problems. The way of avoiding this degeneracy

phenomenon is to force the cost functional to be involved in the maximum principles by adding a

condition like λ 6= 0. One (among many others) and the simplest condition is imposed by choosing

λ = 1 which is known as the famous and probably the most cited Kuhn-Tucker conditions [41]. Thus

the maximum principles under the condition λ = 1 is called the Normal form and the strengthened

forms of the NCO capable of avoiding some type of degeneracy are called Nondegenerate forms.

However, the arising degeneracy or abnormality (i.e. when λ = 0) in the problems is not usual, it is a

special case. When this phenomenon arises, some condition like normality, λ > 0 should be imposed.

The conditions that identify problems in which we can guarantee the existence of a nondegenerate

or normal set of multipliers are usually refered to as Constraint Qualifications (CQ). A detail study

on how the degeneracy phenomenon occurs in optimal control problems and what are the different

ways to tackle this situation for obtaining nondegenerate maximum principles can be found in[44].

We also refer readers to [1, 2, 8, 29, 45, 54, 56] for more survey as well as the recent developments

on the degeneracy phenomenon.
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Chapter 3

Nonsmooth Maximum Principles for

State Constrained Problems

In this chapter we present the first theoretical result we hope to accomplish during the PhD thesis.

We emphasize that these are now being finalized. Our first result is a new Nonsmooth Maximum

Principle for state constrained problems. It breaks into two: the Nonsmooth Maximum Principle is

proved in the convex case and then convexity is removed.

3.1 Optimal Control Problems with State Constraints

First we develop a nonsmooth maximum principle for optimal control problems with pure state con-

straints in the presence of a convexity assumption. To achieve our purpose we intertwine established

approaches used for state constraints with up to date developments. Indeed, we follow closely the

approach developed in [55] (see also [23] and [25]) where necessary conditions for pure state con-

strained problems are derived. Our proofs differ from those in [23] since we apply a new nonsmooth

maximum principle for state constrained problems, derived in [18] (instead of results in [22] as in

[23] ). There is however a price to pay; here we assume that the solution of (P ) is a W 1,1 strong

minimum in contrast with [18] where a weaker notion of minimum, that of local minimum of radius

R is used (in this respect see also [14]). The convexity assumption we impose here may be seen as a

major hindrance to some applications, but it will be removed later on.

For the convenience of the reader we define our problem again. Indeed, the problem of interest,
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denoted throughout by (P ) is that of minimizing the cost function

l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t)) dt

subject to the differential equation

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],

the state constraint

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

the boundary conditions

(x(a), x(b)) ∈ E,

and the control constraints

u(t) ∈ U(t) a.e. t ∈ [a, b].

Here the interval [a, b] is fixed, the state x(t) ∈ Rn and the control u(t) ∈ Rm. Thus the function

f describing the dynamics is f : [a, b] × Rn × Rm → Rn. Moreover h and L are scalar functions

h : [a, b]× Rn → R, L : [a, b]× Rn × Rm → R, U is a set-valued function and E ⊂ Rn × Rn.

We will refer to (P ) as a standard optimal control problem and whenever the state constraint is absent

we denote such problem as (S).

Throughout this chapter we assume that the following basic assumptions are in force:

• (t, (x, u))→ (L(t, (x, u)), f(t, (x, u))) are L × B-measurable,

• the multifunction t→ U(t) has L × B-measurable graph,

• the set E is closed,

• f is locally Lipschitz with respect to x and

• l is locally Lipschitz.

Again for (P ) (or (S)) a pair (x, u) comprising an absolutely continuous function x, the state, and a

measurable function u, the control, is called an admissible process if it satisfies all the constraints.
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3.2 Assumptions

Throughout this report, the pair (x∗, u∗) will always denote the solution of the optimal control

problem under consideration. We shall also consider two important assumptions on the data of our

problem (P ) that we now state.

Let us take any function φ defined in [a, b]× Rn × Rm and taking values in Rn or R.

A1 There exist constants kφx and kφu such that for almost every t ∈ [a, b] and every (xi, ui) (i = 1, 2)

such that

xi ∈ {x : |x− x∗(t)| ≤ ε}, ui ∈ U(t)

we have

|φ(t, x1, u1)− φ(t, x2, u2)| ≤ kφx |x1 − x2|+ kφu |u1 − u2|.

A2 The set valued function t→ U(t) is closed valued and there exists a constant c > 0 such that

for almost every t ∈ [a, b] we have

|u(t)| ≤ c ∀u ∈ U(t).

When A1 is imposed on f and/or L, then the Lipschitz constants are denoted by kfx , kfu, kLx and kLu .

We will discuss these assumptions later on.

A3 For all x such that |x(t) − x∗(t)| ≤ ε the function t → h(t, x) is continuous. Furthermore,

there exists a constant kh > 0 such that the function x→ h(t, x) is Lipschitz of rank kh for all

t ∈ [a, b].

The need to impose continuity of t→ h instead of merely upper semi-continuity is discussed in [23].

Recall that our basic assumptions are in force. Also suppose that both f and L satisfy A1 and that

A2 holds. Those familiar with optimal control theory will surely see that assumption A2 is quite

strong since we are assuming the controls to be bounded. This requirement simplifies the proofs of

the forthcoming results where limits of sequence of controls needed to be taken. On the other hand,

it is quite common in applications.

For future use, observe that our assumptions also assert that following conditions are satisfied:

|φ(t, x∗(t), u)− φ(t, x∗(t), u∗(t))| ≤ kφu |u− u∗(t)| for all u ∈ U(t) a.e. t (2.1)
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and there exists an integrable function k such that

|φ(t, x∗(t), u)| ≤ k(t) for all u ∈ U(t) a.e. t. (2.2)

In the above φ is to be replaced by f and L. Moreover, it is a simple matter to see that the sets

f(t, x, U(t)) and L(t, x, U(t)) are compact for all x ∈ x∗(t) + εB. (2.3)

3.3 Auxiliary Results

In this section we now turn to problem (S). We state and discuss an adaptation of Theorem 3.1 in

[18] that will be essential to our analysis in the forthcoming sections. We call it “an adaptation”

because we state it here under stronger assumptions than those in [18] to be used in our forthcoming

analysis.

Theorem 3.1 Let (x∗, u∗) be a strong local minimum for problem (S). If the basic assumptions

are satisfied, f and L satisfy A1 and U is closed valued, then there exist p ∈ W 1,1([a, b];Rn) and a

scalar λ0 ≥ 0 satisfying the nontriviality condition [NT]:

||p||∞ + λ0 > 0,

the Euler adjoint inclusion [EI]:

(−ṗ(t), 0) ∈ ∂Cx,u
(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
− {0} ×NC

U(t)(u
∗(t)) a.e.,

the global Weierstrass condition [W]:

∀ u ∈ U(t),

〈p(t), f(t, x∗(t), u)〉 − λ0L(t, x∗(t), u) ≤ 〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t)) a.e.,

and the transversality condition [T]:

(p(a),−p(b)) ∈ NL
E(x∗(a), x∗(b)) + λ0∂

Ll(x∗(a), x∗(b)).

Observe first that Theorem 3.1 in [18] assumes that (x∗, u∗) is merely a local minimum of radius R

and assumption A2 is replaced by a weaker condition where the Lipschitz constants are integrable
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functions.

The conclusions of the main result in [22] differs from Theorem 3.1 because of the absence of [W].

Condition [EI] is a main feature of the necessary conditions established in [22]. For [EI] to hold

it is important to assume that both f and L are Lipschitz with respect to (x, u). The Lipschitz

continuity with respect to the control instead of measurability as in the classical case may come as a

disadvantage. However this is the feature responsible for the fact that Proposition 4.1 in [22] holds.

This Proposition asserts that the necessary conditions are also sufficient for linear-convex problems

(as defined in [22]) in the normal form (when λ0 = 1). It is a simple matter to see that the proof of

Proposition 4.1 in [22] adapts easily to show that Theorem 3.1 is also a sufficient condition.

In [22] the results are proved under the assumption that (x∗, u∗) is a weak local minimum1 instead of

a strong local minimum. However, and as pointed out in [17], we only need to restrict the controls

to U(t) ∩ Bε(u∗(t)) to see that conditions of Theorem 3.1 holds for such weak notion of minimum.

To finish this discussion we point out that the conditions given by the classical nonsmmoth maximum

principle (see [15]) are [NT], [W], [T] and [EI] is replaced by

− ṗ(t) ∈ ∂Cx
(
〈p(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
. (3.4)

We refer the reader to [17] for a discussion on (3.4) and [EI].

3.4 The Convex Case

We now consider an additional assumption on the “velocity set”:

C The velocity set {(v, l) : v = f(t, x, u), l = L(t, x, u), u ∈ U(t)} is convex for all (t, x) ∈ [a, b]×
Rn.

We also introduce the following subdifferential

∂̄xh(t, x) := co {lim ξi : ξi ∈ ∇xh(ti, xi), (ti, xi)→ (t, x)}. (4.5)

Theorem 3.2 Let (x∗, u∗) be a strong local minimum for problem (P ). Suppose that f and L satisfy

A1, and that assumptions A2 and C hold and h satisfies A3, then there exist p ∈ W 1,1([a, b];Rn),

γ ∈ L1([a, b];R), a measure µ ∈ C⊕([a, b];R), and a scalar λ0 ≥ 0 satisfying

1The process (x∗, u∗) is said to be a weak local minimum when it minimizes the cost over all admissible processes
(x, u) such that |x(t)− x∗(t)| ≤ ε for all t ∈ [a, b] and |u(t)− u∗(t)| ≤ ε for almost all t ∈ [a, b].
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(i) µ{[a, b]}+ ||p||∞ + λ0 > 0,

(ii) (−ṗ(t), 0) ∈ ∂Cx,u
(
〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t))

)
−{0} ×NC

U(t)(u
∗(t)) a.e.,

(iii) ∀ u ∈ U(t),

〈q(t), f(t, x∗(t), u)〉 − λ0L(t, x∗(t), u) ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 − λ0L(t, x∗(t), u∗(t)) a.e.,

(iv) (p(a),−q(b)) ∈ NL
E(x∗(a), x∗(b)) + λ0∂l(x

∗(a), x∗(b)),

(v) γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e.,

(vi) supp{µ} ⊂ {t ∈ [a, b] : h(t, x∗(t)) = 0} ,

where

q(t) =

 p(t) +
∫
[a,t)

γ(s)µ(ds) t ∈ [a, b)

p(t) +
∫
[a,b]

γ(s)µ(ds) t = b.
(4.6)

Remark: Before proceeding it is important to note that the proof of Theorem 3.1 shows that the

normal cone NC
U(t)(u

∗(t)) appearing in [EI] can be rewritten simply as KU∂
CdU(t)(u

∗(t)) where KU

is a fixed constant depending only on the constants of A1 and A2 (see remark on p. 4522 in [18]).

After such replacement we get indeed a sharper version of [EI]. This sharper version of [EI] leads to a

sharper version of (ii) in Theorem 3.2. The reader should keep in mind that such sharper versions are

used in our analysis and they are important specially when taking limits. However, since [22], this

kind of conditions have been stated with the normal cone and for consistence we keep such option

in here.

The sketch of the proof of the Theorem 3.2 is presented in Section 3.7.

3.5 Non Convex Case

In this section we present a nonsmooth maximum principle for the optimal control problem (P ) when

the convexity assumption imposed in the previous section is removed.

Now we replace the subdifferential ∂̄xh by a more refined subdifferential ∂>x h defined by

∂>x h(t, x) := co {ξ : ∃(ti, xi)
h−→ (t, x) : h(ti, xi) > 0 ∀i, ∇xh(ti, xi)→ ξ}. (5.7)
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Theorem 3.3 Let (x∗, u∗) be a strong local minimum for problem (P ). Assume that f and L

satisfy A1, h satisfies A3 and that A2 as well as the basic assumptions are satisfied. Then there

exist an absolutely continuous function p, integrable functions ξ and γ, a non-negative measure

µ ∈ C⊕([a, b];R), and a scalar λ0 ≥ 0 such that conditions (i)–(vi) of Theorem 3.2 hold with ∂>x h as

in (5.7) replacing ∂̄xh and where q is as defined in (4.6).

The above theorem adapts easily when we assume (x∗, u∗) to be a weak local minimum instead of a

strong local minimum. It is sufficient to replace U(t) by U(t) ∩ Bε(u∗(t)). Our results in Theorem

3.3 can be extended to cover with a W 1,1 local minimum for problem (P ). This can be easily

accomplished following the approach in [56].

Theorem 3.4 Let (x∗, u∗) be merely a W 1,1 local minimum for problem (P ). Then the conclusions

of Theorem 3.3 hold.

3.6 Discussion of the Results

The main aim of Maximum Principle (MP) is to get the ’smallest’ set of candidates of local minimizers

which ensures the optimal solution of the problem. The Classical Maximum Principle (or Pontryagin

Maximum Principle) is a necessary condition of optimality for optimal control problems. But for

normal linear-convex problems, Pontryagin maximum principle (PMP) is a necessary and sufficient

condition for optimality.

In the case of Classical Nonsmooth Maximum Principle it is not guaranteed that the optimality

conditions are necessary and sufficient because of the nonsmoothness of the problems. An example

in this regard can be consulted in [22]. In order to fix this situation, de Pinho and Vinter came

up with the necessary conditions of optimality in the ”Euler form”. The main ingredient of these

necessary conditions is the ”Joint” adjoint inclusion. These necessary conditions are a sufficient

condition for normal linear convex problem (see Proposition 4.1 in [22]). However, these necessary

conditions failed to be a maximum principle since the Weierstrass Condition was not validated. In

2002, de Pinho et al. [23] extended the work of de Pinho and Vinter to state constraints and they also

show that such generalization remains a sufficient condition for the normal linear-convex problems.

Recently Clarke and de Pinho derived a new nonsmooth maximum principle (see [18]) in the vein of

[22]. As before this result remains a sufficient condition for normal linear-convex problems.

As in [23], in this thesis we generalize the result of Clarke and de Pinho [18] to state constrained

problems. As before, our Nonsmooth Maximum Principle (NMP) is a sufficient condition for normal
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linear-convex problems. Of course, the results in our state constrained problems are worth in so far

as they apply to nonsmooth problems. In fact they coincide with known results for the smooth case.

3.7 Sketch of the Proofs

All the results are proved assuming that L ≡ 0. The case of L 6= 0 is treated by a standard and well

known technique.

3.7.1 Convex Case

We now present the sketch of the Proof of Theorem 3.2.

• First we validate that the Theorem can be established for the simpler problem

(Q)



Minimize l(x(b))

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

h(t, x(t)) ≤ 0 for all t ∈ [a, b]

(x(a), x(b)) ∈ {xa} × Eb.

Problem (Q) is a special case of (P ) in which E = {xa} × Eb and l(xa, xb) = l(xb).

Now the proof consists of the following steps

Q1 Define a sequence of problems penalizing the state-constraint violation. The sequence of

problems is

(Qi)


Minimize l(x(b)) + i

∫ b

a

h+(t, x(t)) dt

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ {xa} × Eb,

where h+(t, x) := max{0, h(t, x)}.

Q2 Assume that

[IH] lim
i→∞

inf{Qi} = inf{Q}.

34



Q3 Set W to be the set of measurable functions u : [a, b]→ Rm, u(t) ∈ U(t) a.e. such that a

solution of the differential equation ẋ(t) = f(t, x(t), u(t)), for almost every t ∈ [a, b], with

x(t) ∈ x∗(t) + εB for all t ∈ [a, b] and x(a) = xa and x(b) ∈ Eb. We provide W with the

L1 metric defined by ∆(u, v) :=‖ u− v ‖L1 and set

Ji(u) := l(x(b)) + i

∫ b

a

h+(t, x(t)) dt.

Then (W,∆) is a complete metric space in which the functional Ji : W → R is continuous.

Q4 Apply Ekeland’s theorem to the problems of the form

(Oi)

{
Minimize Ji(u)

subject to u ∈ W

which are closely related to (Qi). Observe the fact that u∗ (corresponding to x∗) is an

admissible solution for each of these problems: we have Ji(u
∗) = l(x∗(b)) = inf Q.

Let εi = Ji(u
∗) − inf Qi. The conclusions of application of Ekeland’s theorem drives us

to the sequence of optimal control problems showing that the process (xi, ui) solves the

following optimal control problem:

(Ei)



Minimize l(x(b)) + i

∫ b

a

h+(t, x(t)) dt+
√
εi

∫ b

a

|u(t)− ui(t)| dt

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

x(a) = xa

x(b) ∈ Eb.

The fact is that εi → 0 allows us to prove that ui converges strongly to u∗ and xi converges

uniformly to x∗.

Q5 We apply Theorem 3.1 to each (Ei) obtaining the existence of an absolutely continuous

function pi and a scalar λi ≥ 0 such that

(pi(t), λi) 6= 0 for all t, (7.8)

(−ṗi(t), ni(t)) ∈ ∂Cx,u
{
〈pi(t), f(t, xi(t), ui(t))〉 − iλih+(t, xi(t))

−
√
εiλi |u(t)− ui(t)|} a.e.

(7.9)
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ni(t) ∈ NC
U(t)(ui(t)) for all t, (7.10)

u ∈ U(t) =⇒
〈pi(t), f(t, xi(t), u)〉 −

√
εiλi |u− ui(t)| ≤ 〈pi(t), f(t, xi(t), ui(t))〉 a.e.

(7.11)

− pi(b) ∈ NL
Eb

(xi(b)) + λi∂
Ll(xi(b)) (7.12)

Q6 Rewriting these conditions and taking limits as in [23] we get the required conclusions,

i.e., we get the existence of an absolutely continuous function p : [a, b]→ Rn, an integrable

function γ : [a, b]→ Rn, a measure µ ∈ C⊕([a, b];R) and a scalar λ0 ≥ 0 such that

µ{[a, b]}+ ||p||∞ + λ0 > 0, (7.13)

(−ṗ(t), n(t)) ∈ ∂Cx,u〈q(t), f(t, x∗(t), u∗(t))〉 − {0} ×NC
U(t)(u

∗(t)) a.e. (7.14)

∀ u ∈ U(t), 〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e. (7.15)

−q(b) ∈ NL
Eb

(x∗(b)) + λ0∂l(x
∗(b)), (7.16)

γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e., (7.17)

supp{µ} ⊂ {t ∈ [a, b] : h(t, x∗(t)) = 0} , (7.18)

where q is as in (4.6).

Q7 Finally we show that C implies IH. We omit all the details here because this can be shown

by an adaptation from the argument in [23].

The remaining of the proof has three stages. We first extend Theorem 3.2 to problems where

x(a) ∈ Ea, and Ea is a closed set. This is done following the lines in the end of the proof of

Theorem 3.1 in [55].

Next we consider the case when the cost is l = l(x(a), x(b)). This is done applying the technique

used in Step 2 of section 6 in [25]. And finally, following the approach in section 6 in [25], we

derive necessary conditions when (x(a), x(b)) ∈ E, completing the proof.

3.7.2 Non Convex Case

We now proceed to present the sketch of the proof of Theorem 3.3. Our proof consists of several

steps.

Step 1: We first consider the following ’minimax’ optimal control problem where the state constraint
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functional max
t∈[a,b]

h(t, x(t)) appears in the cost.

(R̃)



Minimize l̃(x(a), x(b),maxt∈[a,b] h(t, x(t)))

over x ∈ W 1,1 and measurable functions u satisfying

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

u(t) ∈ U(t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ Ea × Rn.

where l̃ : Rn × Rn × R→ R is a given function and Ea ⊂ Rn is a given closed set. We observe

that (R̃) is the optimal control problem with free endpoint constraints.

We impose here the following additional assumption A4, the necessity of which for the forth-

coming development of our proof will come out soon.

A4 The integrable function l̃ is Lipschitz continuous on a neighbourhood of

(x∗(a), x∗(b), max
t∈[a,b]

h(t, x∗(t)))

and l̃ is monotone in the z variable, in the sense that z′ ≥ z implies l̃(y, x, z′) ≥ l̃(y, x, z),

for all (y, x) ∈ Rn × Rn.

Step 2: In this step, we present an Auxiliary Result in the form of the Proposition 3.5. The advantage of

considering this Proposition is that this problem is a special case where the maximum principles

presented in the Theorem 3.2 of convex case can be applied.

Proposition 3.5 Let (x∗, u∗) be a strong local minimum for problem (R̃). Assume the basic

hypotheses, A1, A2 and A3 and the data for the problem (R̃) satisfies the hypothesis A4.

Then there exist an absolutely continuous function p : [a, b] → Rn, integrable functions ξ :

[a, b]→ Rm and γ : [a, b]→ Rn, a non-negative measure µ ∈ C⊕([a, b];R), and a scalar λ0 ≥ 0
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such that

µ{[a, b]}+ ||p||∞ + λ0 > 0, (7.19)

(−ṗ(t), ξ(t)) ∈ ∂Cx,u〈q(t), f(t, x∗(t), u∗(t))〉 a.e. (7.20)

ξ(t) ∈ NC
U(t)(u

∗(t)) a.e. (7.21)

(p(a),−q(b),
∫
[a,b)

µ(ds)) ∈ NL
Ea

(x∗(a))× {0, 0}+ λ0∂l̃(x
∗(a), x∗(b), max

t∈[a,b]
h(t, x∗(t)), (7.22)

γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e., (7.23)

∀ u ∈ U(t), 〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e. , (7.24)

supp{µ} ⊂
{
t ∈ [a, b] : h(t, x∗(t)) = maxs∈[a,b] h(s, x∗(s))

}
, (7.25)

where q is defined as in (4.6).

The proof of Proposition 3.5 is done in the light of the Proposition 9.5.4 of [56]. Thus we are

omitting the details by refereing readers to [7].

Step 3: Let us now consider the set

V := {(x, u, e) : (x, u) satisfies ẋ(t) = f(t, x(t), u(t)),

u(t) ∈ U(t) a.e., e ∈ Rn, (x(a), e) ∈ E and ‖x− x∗‖L∞ ≤ ε}
(7.26)

and let dV : V × V → R be a function defined by

dV ((x, u, e), (x′, u′, e′)) = |x(a)− x′(a)|+ |e− e′|+
∫ b

a

|u(t)− u′(t)|dt (7.27)

For all i, we choose εi ↓ 0 and define the function

l̃i(x, y, x
′, y′, z) := max{l(x, y)− l(x∗(a), x∗(b)) + ε2i , z, |x′ − y′|}.

Then it is easy to verify that dV defines a metric on the set V and (V, dV ) is a complete metric

space with the following properties:

(i) If (xi, ui, ei)→ (x, u, e) in the metric space (V, dV ), then ‖xi − x‖L∞ → 0,

(ii) The function (x, u, e)→ l̃i(x(a), e, x(b), e,maxt∈[a,b] h(t, x(t))) is continuous on (V, dV ).
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We now consider the optimization problem

Minimize {l̃i(x(a), e, x(b), e, max
t∈[a,b]

h(t, x(t))) : (x, u, e) ∈ V }

We observe that

l̃i(x
∗(a), x∗(b), x∗(b), x∗(b), max

t∈[a,b]
h(t, x∗(t))) = ε2i .

Also the cost l̃i is non-negative valued, it follows that (x∗, u∗, x∗(b)) is an ε2i -minimizer for

the above minimization problem. After the application of Ekeland’s theorem we deduce that

(xi, yi, wi ≡ 0, ui) is a strong local minimum for the optimal control problem

(R̃i)



Minimize l̃i(x(a), y(a), x(b), y(b),maxt∈[a,b] h(t, x(t)))

+ εi[|x(a)− xi(a)|+ |y(a)− yi(a)|+ w(b)]

over x, y, w ∈ W 1,1 and measurable functions u satisfying

ẋ(t) = f(t, x(t), u(t)), ẏ(t) = 0, ẇ(t) = |u(t)− ui(t)| a.e.,

u(t) ∈ U(t) a.e.,

(x(a), y(a), w(a)) ∈ E × {0}.

The cost function of (R̃i) satisfies all the assumptions of the Proposition 3.5 and thus this is an

example of optimal control problem where the special case of maximum principle of Proposition

3.5 applies.

Thus, we deduce the existence of absolutely continuous functions pi ∈ W 1,1, di ∈ Rn, ri ∈ R,

integrable functions ξi and γi, a non-negative measure µi ∈ C⊕([a, b];R) satisfying

(−ṗi(t),−ḋi(t),−ṙi(t), ẋi(t), ẏi(t), 0, ξi(t)) ∈
co ∂(〈qi(t), f(t, xi(t), ui(t))〉+ ri|u(t)− ui(t)|) a.e.

ξi(t) ∈ co NU(t)(ui(t)) a.e. t ∈ [a, b],

∀ ui ∈ U(t), 〈qi(t), f(t, xi(t), u)〉+ ri|u(t)− ui(t)|) ≤ 〈qi(t), f(t, xi(t), ui(t))〉 a.e. ,

(pi(a), di(a), ri(a),−qi(b),−di(b),−ri(b),
∫
[a,b]

µi(dt)) ∈
NE×{0}(xi(a), yi(a), wi(a))× {0, 0, 0, 0}+ ∂{l̃i(x, y, x′, y′, z)

+εi[|x(a)− xi(a)|+ |y(a)− yi(a)|+ wi(b)]},

γi(t) ∈ ∂̄xh(t, xi(t)) µ-a.e.,

supp{µi} ⊂
{
t : h(t, xi(t)) = maxs∈[a,b] h(s, xi(s))

}
.

(7.28)
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where qi := pi +
∫
γi(s)µi(ds) in the above relations.

Now rewriting these conditions and taking limits we will obtain the required conclusion.
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Chapter 4

Maximum Principles for Mixed

Constrained Problems–Convex Case

In this chapter we present a new nonsmmoth maximum principle for problem (P ′) with both pure

state and mixed state-control constraints under some convexity assumptions. Problems with mixed

state control constraints, amply studied in a smooth framework (see, for example, [1], [3], [15], [26],

[27],[33], [46], [49], [51]) have received little attention. Here we only focus on the convex case. The

result we report here was announced in [6]. During this thesis we hope to treat the nonconvex case,

but we have not fully studied this problem.

4.1 The Problem

The problem of interest is

(P ′)



Minimize l(x(a), x(b))

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

h(t, x(t)) ≤ 0 for all t ∈ [a, b]

(x(t), u(t)) ∈ S(t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E.

We consider the basic hypotheses on the problem data throughout. They are the following: f and L

are L × Bn+m, S is L × B, E is closed and l is locally Lipschitz.

41



4.2 Auxiliary Results

In this section we present a simplified version of one of the main results in [18] that will be of

importance in the forthcoming developments.

Take a fixed interval [a, b] and a set S of [a, b]× Rn × Rn. Define

S(t) := {(x, u) : (t, x, u) ∈ S} for all t ∈ [a, b]. (2.1)

Assume for the time being that E ⊂ Rn×Rn and l : Rn×Rn → R. Consider the following problem:

(C)



Minimize l(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t))dt

subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b]

(x(t), u(t)) ∈ S(t) a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E.

where L : [a, b]× Rn × Rm → R.

For some ε > 01 define

Sε∗(t) = {(x, u) ∈ S(t) : |x− x∗(t)| ≤ ε} .

In generic terms we assume that a function φ(t, x, u) satisfies [Lε∗] if:

[Lε∗] There exist constants kφx and kφu such that for almost every t ∈ [a, b] and every (xi, ui) ∈ Sε∗(t)
(i = 1, 2) we have

|φ(t, x1, u1)− φ(t, x2, u2)| ≤ kφx |x1 − x2|+ kφu |u1 − u2|.

If this assumption is imposed on f , then the Lipschitz constants are denoted by kfx and kfu. As for

S(t) we consider the following bounded slope condition:

[BSε∗] There exists a constant kS such that for almost every t ∈ [a, b] the following condition holds

(x, u) ∈ Sε∗(t), (α, β) ∈ NP
S(t)(x, u) =⇒ |α| ≤ kS|β|.

The two previous hypotheses are strengthening of the analogous hypotheses in [18]. For the sake of

uniformity and the forthcoming analysis we need to position an extra hypothesis on the set Sε∗(t).

We assume that:

1The ε here can be taken to be equal to the parameter defining the strong local minimum.
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[CSε∗] The set Sε∗(t) is closed and there exists an integrable function c such that for almost every

t ∈ [a, b] the following holds

Sε∗(t) is closed and (x, u) ∈ Sε∗(t) =⇒ |(x, u)| ≤ c(t).

We observe that although [CSε∗] is a strong assumption it is nevertheless of importance in our future

development. Necessary conditions of optimality for (C) are given by the following theorem:

Theorem 4.1 (adaption of Theorem 7.1 in [18]) Let (x∗, u∗) be a strong local minimum for prob-

lem (C). Assume that the basic hypotheses, that f and L satisfy [Lε∗] and that [BSε∗] and [CSε∗]

hold.

Then there exist an absolutely continuous function p : [a, b]→ Rn and a scalar λ0 ≥ 0 such that

(p(t), λ0) 6= 0 ∀ t ∈ [a, b], (2.2)

(−ṗ(t), 0) ∈ ∂Cx,u
[
〈p(t), f̄(t)〉 − λ0L̄(t)−K|p(t)|d̄S(t)(t)

]
a.e. (2.3)

(x∗(t), u) ∈ S(t) =⇒ 〈p(t), f(t, x∗(t), u)〉 − λ0L(t, x∗(t), u) (2.4)

≤ 〈p(t), f(t, x∗(t), u∗(t))− λ0L(t, x∗(t), u∗(t))〉 a.e.

(p(a),−p(b)) ∈ NL
E(x∗(a), x∗(b)) + λ0∂l(x

∗(a), x∗(b)), (2.5)

where f̄(t) and L̄(t) represent the function evaluated at (t, x∗(t), u∗(t)), d̄S(t)(t) is the distance function

to S(t) evaluated at (x∗(t), u∗(t)) and K in (2.3) is a constant depending only on kfx , k
L
x , k

f
u, k

L
u

and kS.

4.3 The Convex Case

We now turn to problem (P ′). For this problem we derive a nonsmooth maximum principle under

the following convexity assumption on the “velocity set”:

[C’] The velocity set {v ∈ Rn : v = f(t, x, u), u ∈ S(t, x)} is convex for all t ∈ [a, b].

Furthermore we need to impose two more hypotheses on the data of our problem, one related to the

state constraint and another to mixed constraints.
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[H1] For all x ∈ x∗(t) + εB the function t → h(t, x) is continuous and there exists a scalar kh > 0

such that the function x→ h(t, x) is Lipschitz of rank kh for all t ∈ [a, b].

[H2] For almost every t ∈ [a, b] the following condition holds: for all u ∈ S(t, x∗(t)) and all sequence

xn → x∗(t) there exists a sequence un ∈ S(t, xn) such that un → u.

In the above the set S(t, x) is defined as

S(t, x) = {u : (x, u) ∈ S(t)}

where S(t) is as in (2.1). For a discussion on the need to impose continuity of t → h see [23].

Hypothesis [H2] asserts the lower semi-continuity of the multifunction x→ S(t, x) (for definition and

properties see [4]).

Assume the basic assumptions. Also suppose that f satisfies [Lε∗] and that both [BSε∗] and [CSε∗]

hold. Under these assumptions we note for future use that the following conditions are satisfied:

|f(t, x∗(t), u)− f(t, x∗(t), u∗(t))| ≤ kfu|u− u∗(t)| for all u ∈ S(t, x∗(t)) a.e. t (3.6)

for all u ∈ S(t, x∗(t)) a.e. t ∈ [a, b] and there exists an integrable function k such that

|f(t, x∗(t), u)| ≤ k(t) for all u ∈ S(t, x∗(t)) a.e. t. (3.7)

We will now state our main result.

Theorem 4.2 Let (x∗, u∗) be a strong local minimum for problem (P ′). Assume that the basic

hypotheses, [C’], [H1], [H2], [BSε∗] and [CSε∗] hold and that f satisfies [Lε∗]. Then there exist an

absolutely continuous function p : [a, b] → Rn, an integrable function γ : [a, b] → Rn, a measure

µ ∈ C⊕([a, b];R) and a scalar λ0 ≥ 0 such that

(i) µ{[a, b]}+ ||p||∞ + λ0 > 0,

(ii) (−ṗ(t), 0) ∈ ∂Cx,u〈q(t), f(t, x∗(t), u∗(t))〉 −NC
S(t)(x

∗(t), u∗(t)) a.e.,

(iii) (x∗(t), u) ∈ S(t) =⇒ 〈q(t), f(t, x∗(t), u)〉 ≤ 〈q(t), f(t, x∗(t), u∗(t))〉 a.e.,

(iv) (p(a),−q(b)) ∈ NL
E(x∗(a), x∗(b)) + λ0∂l(x

∗(a), x∗(b)),

(v) γ(t) ∈ ∂̄h(t, x∗(t)) µ-a.e.,

(vi) supp{µ} ⊂ {t ∈ [a, b] : h (t, x∗(t)) = 0} ,
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where q(t) is as in (4.6) and the ∂̄ is as in (4.5).

Remark 1 The proof shows that we prove a sharper form of (ii):

(−ṗ(t), 0) ∈ ∂Cx,u〈q(t), f(t, x∗(t), u∗(t))〉 −K|q(t)|∂Cx,udS(t)(x∗(t), u∗(t)).

Remark 2 It is also easy to deduce from the proofs that when assumption [H2] is not imposed, a

“weaker” version of the necessary conditions for (P ′) (in the vein of [22]) can be obtained: all the

conclusions but (iii) (the Weierstrass condition) hold.

4.4 Sketch of the Proof of Theorem 4.2

The proof of Theorem 4.2 is done using the similar procedures (but in the context of mixed con-

straints) as in the Theorem 3.2 of Chapter 3. Since our main result is already appeared in [6], so we

refer the reader to [6] for details about the sketch of the proof of Theorem 4.2.
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Chapter 5

Application of Optimal Control to Real

Life Problems

Now-a-days optimal control is a multidisciplinary field of research connecting almost all branches

of science, engineering and technology, social and management sciences, life science and medicine.

Although the early applications of optimal control were mainly in aerospace engineering (selection

of optimal flight paths), the modern-day applications include process control, resource economics,

robotics, engine management and even the recent applications lie in infectious diseases modeling and

control in biology and medicine. In this chapter, our aim is to discuss another crucial part of my

thesis ”Applications” of optimal control to real life problems.

We discuss here the optimal control strategy for the chemotherapy of the infectious HIV model,

causing one of the most devastating and life-killing pandemic diseases AIDS. We extend and modify

the existing model proposed in [37], by adding the state constraints in the data and use the optimal

control techniques to obtain the new solution.

5.1 Introduction

More than 30 years after the first detection of Acquired Immune Deficiency Syndrome (AIDS) and it’s

etiological agent Human Immunodeficiency Virus (HIV) in the early 1980s, the global health of the

whole populations in the world is still under a great threat due to a mysterious and difficult unknown

mechanism of HIV infections in the human body. Of the 34.3 million people worldwide living with

HIV infections today, more than 24 million are in the developing world. A proper treatment or

complete cure from AIDS is yet far away from the reality and even an anti-HIV vaccine is still a
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dream to the biologists and physicists [9, 34].

The chemotherapies are the only way of treatments for HIV positive patients till today which are

aimed at killing or halting the virus pathogen and thus can serve to help the body fighting against

the infections [40]. Several (more that 30 varieties of single and/or combined) antiretroviral drugs for

the chemotherapy treatments have been approved by the US Food and Drug Administration (FDA)

since 1987s aiming at reducing the viral population and improving the immune response. All these

drugs cannot cure the diseases completely, rather they can improve the lives of HIV positive patients

for a certain period depending on the optimal chemotherapeutic drug dosage strategies. This brings

new hope to the treatment of HIV infection in absence of HIV vaccine, and we are exploring strategies

for such treatments using optimal control techniques.

5.2 Mathematical Model

The mathematical model of HIV is a set of ordinary differential equations (ODEs) which describes

the interactions between the CD4+T cells in the human immune systems and the viruses. Recently

several mathematical models which describe a better understanding of the cell-virus interactions have

been developed just in the past few years and even these are constantly being updated to improve

the modeling aspects. We refer readers to ([19, 20, 37, 38, 40, 42, 50, 52] and references therein)

for more details about the background and analysis of different models as well as the propagation of

diseases.

5.2.1 The Existing Model

We mention that a mathematical model represents the dynamics of the cell-virus interactions and

there exist a number of models representing this dynamics available in the literature. However, the

crucial role is played by CD4+T lymphocytes, commonly referred to as helper- T-cells. These cells

are mainly the target of the virus and the command system in the defense against it. A command

from these cells activates CD8+T cells, shortly called killer-T-cells, which then fight the virus by

killing its main source of reproduction. An infected CD4+T cell can produce in the neighborhood

of 500 new viruses before its death and thus becomes the much more important target to destroy

then the virus itself [42]. However, when a free HIV virus enters the body and attacks the uninfected

CD4+T cells, the cells become infected and go through a neutral stage before becoming actively

infected for a certain period. The cells in this latent/interim stage, which cannot infect other cells is

called the latently infected. Thus the CD4+T cells are classified into three classes: active/uninfected
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CD4+T cells, whose concentration is represented by a variable TA(t), and other two types of infected

CD4+T cells are latently infected and actively infected cells with their concentrations represented by

TL(t) and TI(t) respectively. The concentration of the free infectious virus is represented by V (t).

Now the dynamics of these four populations can be modeled by the following system of ordinary

differential equations.

dTA
dt

=
s

1 + V (t)
− µTATA(t) + rTA(t)

(
1− TA(t) + TL(t) + TI(t)

Tmax

)
− µiV (t)TA(t), (2.1)

dTL
dt

= µiV (t)TA(t)− µTLTL(t)− µcTL(t), (2.2)

dTI
dt

= µcTL(t)− µTITI(t), (2.3)

dV

dt
= NµTITI(t)− µiV (t)TA(t)− µV V (t), (2.4)

with the initial conditions

TA(0) = TA0, TL(0) = 0, TI(0) = 0, and V (0) = V0, (2.5)

for the case of infection by free virus, or

TA(0) = TA0, TL(0) = TL0, TI(0) = TI0, and V (0) = V0, (2.6)

for the case of infections by both free virus and infected cells.

In the equations (2.1)-(2.4) the terms with negative signs and multipliers µTA , µTL , µTI , and µV

represent the natural deaths of active CD4+T cells, latently infected CD4+T cells, actively infected

CD4+T cells, and of the free virus respectively. The details explanations and analysis of the model

can be found in [37]. We provide the definitions of the parameters and their clinically approved

values in Table 5.1.

5.2.2 The Optimal Chemotherapeutic Strategy

The influence of the chemotherapy in the HIV model is represented by a control function (or

chemotherapy function) u(t). This control represents the percentage of effect the chemotherapy

has on the viral production. Since the drugs reduce the viral infectivity, We multiply the chemother-

apy function u(t) with the term µTITI(t) in the last equation (2.4) modeling the dynamics of the
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Table 5.1: Parameters and Constants used in HIV Model and Their Clinically Approved Values [37]

Parameters and Constants Definitions of the Parameters Clinical values

µTA natural death rate of uninfected CD4+T cell 0.02 d−1

µTL natural death rate of latently infected CD4+T cell 0.02 d−1

µTI natural death rate of actively infected CD4+T cell 0.24 d−1

µV natural death rate of free virus population 2.4 d−1

µi rate CD4+T cells become infected by free virus 2.4× 10−5 mm3 d−1

µc rate TL cells convert to actively infected 3× 10−3 d−1

r growth rate for the CD4+T cell population 0.03 d−1

N number of free virus produced by TI cell population 1200
Tmax maximum CD4+T cell population level 1.5× 103 mm−3

s source term for uninfected CD4+T cells

where s is the parameter in the term
s

1 + V
10 d−1 mm−3

virus to achieve this effect mathematically. Now the term NµTITI(t), representing the number of

viruses produced by actively infected CD4+T cells at a rate N , is reduced by the factor u(t) due to

the killing affect of the drug. Thus the model presented in (2.1)-(2.4) is now reformulated as

dTA
dt

=
s

1 + V (t)
− µTATA(t) + rTA(t)

(
1− TA(t) + TL(t) + TI(t)

Tmax

)
− µiV (t)TA(t), (2.7)

dTL
dt

= µiV (t)TA(t)− µTLTL(t)− µcTL(t), (2.8)

dTI
dt

= µcTL(t)− µTITI(t), (2.9)

dV

dt
= (1− u(t))NµTITI(t)− µiV (t)TA(t)− µV V (t), (2.10)

with the initial conditions as in (2.5) and/or in (2.6).

Here the control class are assumed to be the measurable functions defined on the fixed interval [ts, tf ],

with the restriction that u ∈ U(t) : 0 ≤ u(t) ≤ 1, ∀t ∈ [ts, tf ].

Moreover, the finite interval of treatment is necessary because of the allowable treatment window

for the chemotherapy. This is due to the fact that HIV has a strong ability to mutate and develop

resistance to the chemotherapy treatment after some finite time frame [48]. On the other hand, the

treatment for infinite time period has a hazardous side effects. Therefore treatment time t should
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be finite and must satisfy the restriction t ∈ [ts, tf ]. For most of the HIV chemotherapy drugs, the

length of treatment is less than 500 days [30]. We also refer readers to [10, 19, 20, 35, 36, 39, 40] for

more explanations and details discussions about the above issues.

The key target of this model is that the number of uninfected CD4+T cells should be kept as high

as possible while at the same time the negative side-effects and cost of the chemotherapy are to be

minimized. Taking all these into consideration, the objective function in the vein of [37] is:

Minimize J(u) =

∫ tf

ts

(
− TA(t) +

1

2
Bu2(t)

)
dt

subject to

the dynamics defined in (2.7)− (2.10),

with the initial conditions as in (2.6),

and the control constraints u ∈ [0, 1] a.e.

(2.11)

where the parameter B > 0 represents the desired ’weight’ on the benefit and cost. Equation (2.11)

says that we are interested to maximize the benefit based on the T cell counts, and minimize the

systemic cost based on the percentage effect of the chemotherapy given (i.e. u) and thus we are

minimizing the negative of the difference. It is worth to note that a quadratic cost is chosen here

because of the fact that the cost function is assumed to be a nonlinear function of u∗ and there is

not a linear relationship between the effects of treatment on T cells or virus. If the control u(t) = 1

corresponds to maximal use of chemotherapy, then the maximal cost is represented as (u(t))2. Now

the aim is to find an optimal control (u∗) such that

min
u∈[0,1]

J(u) = J(u∗).

5.3 Our Proposed Model

All the models in the references including the discussed one [37] of HIV infections have been solved

applying the Pontryagin maximum principles of the optimal control theory in absence of state con-

straints. Our intention here is to find a new solution of the model in [37] imposing some state

constraints in the data. We see that the CD4+T cells count is very crucial for the treatments of HIV

infections. The CD4+T cells count ’less than 200/mm3’ indicates the severity of the disease. Our

idea behind on imposing the state constraints is that the uninfected CD4+T cells count is restricted

to follow a lower bound, say TA(t) ≥ 200 so that the CD4+T cells count never goes below 200/mm3.

50



Our proposed model then takes the following form:

dTA
dt

=
s

1 + V (t)
− µTATA(t) + rTA(t)

(
1− TA(t) + TL(t) + TI(t)

Tmax

)
− µiV (t)TA(t), (3.12)

dTL
dt

= µiV (t)TA(t)− µTLTL(t)− µcTL(t), (3.13)

dTI
dt

= µcTL(t)− µTITI(t), (3.14)

dV

dt
= (1− u(t))NµTITI(t)− µiV (t)TA(t)− µV V (t), (3.15)

TA(t) ≥ T̃ , (3.16)

with the initial conditions

TA(0) = TA0, TL(0) = TL0, TI(0) = TI0, and V (0) = V0, (3.17)

and the objective functional

Minimize J(u) = −TA(tf ) +

∫ tf

ts

Bu(t)dt (3.18)

Here T̃ is a lower bound belonging to R.

Our aim is to maximize the CD4+T cells count at the end of the treatment while minimize the effect

of the drugs during the treatment. We consider the control u(t) as a linear term in L1 space for

obtaining the stronger treatment strategy.

5.3.1 New Challenge

It is our challenge now to solve the proposed model (3.12)-(3.16) and find out a new chemotherapeutic

strategy for the HIV infections. We will try to overcome this challenge during the PhD thesis.

Although the analytical solution of such problem may be difficult due to nonlinearity of the dynamics

and the presence of state constraint, we hope to handle this new model analytically and then compare

the result by numerical illustration.
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Chapter 6

Conclusion and Future Directions

In this concluding Chapter, we present a summary of the main Contributions of our work. We

propose our future plan of the present work to be carried out within the rest of time frame. We

also pose some open issues which require further extensive research and investigations in this area in

future.

6.1 Contributions

Our main contributions have been presented in Chapter 3 and Chapter 4. We have derived three

distinct sets of nonsmooth necessary conditions of optimality for constrained optimal control problems

in the form of maximum principles with appropriate assumptions. In this report, we only present

our results in a sketched form. The details derivations of our results will be accommodated in the

final Thesis.

In Section 3.1 of Chapter 3 a new nonsmooth maximum principles for optimal control problems with

state constraints have been derived when the velocity set is convex.

Another version of new necessary conditions of optimality for state constrained optimal control

problems have been provided in Section 3.5 considering the more general nonconvex case of the data.

In Chapter 4 a new nonsmmoth maximum principle for problem with both pure state and mixed

state-control constraints under some convexity assumptions have been derived. Having doing that

we introduce a bounded slope conditions on the data set along with other appropriate hypotheses.

52



6.2 Future Works

Optimal Control is a vast area of distinct research in the Dynamic Optimization, but our work has

touched a little part of it. Also in this PhD research, we have a time constraint to finish the work

within a prescribed time framework, say till 2013. Within the rest of time, we will try to modify

and refine our results we already have. We will mainly concentrate to implement the optimal control

techniques in some real life problems, like the HIV model by imposing state constraints in the existing

data set for obtaining the new solution analytically and comparing the result numerically. It will be

of course a challenging work to get an analytical solution of such model (proposed in Section 5.3),

because the analytical solution of the proposed model may be difficult due to the highly nonlinearity

of the dynamic equations and presence of state constraint. Therefore, we are in parallel searching

some problems which are linear and/or nonlinear but comparatively easy to handle analytically first

and then illustrate the result numerically. But nevertheless, we hope to do that during the PhD

thesis.

Research on Optimal Control with State Constraints is still an open issue. There are many ques-

tions related to this issue is still unsolved and/or not properly exploited, specially for the presence

of measure (due to state constraints) in the problems. We believe that extensive and continuous

involvement in optimal control research may result in to answer many questions and also may bring

tremendous achievements for the generation plus. Therefore our further research will be dedicated

to such open issues.
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